

RISE OF NATION ACADEMY
"We create the impeccable Creature"
Test Paper
Standard - XIIth
Subject-Mathematics
Topic - Full Course
Date - 03/02/2019
Time - 03:00 hrs.
Max. Marks: 100
Min. Marks: 50

SECTION.A

Questions 1 to 4 carry 1 mark each.

1. Find the maximum value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1+\sin \theta & 1 \\ 1 & 1 & 1+\cos \theta\end{array}\right|$
2. Examine, if $\sin |x|$ is a continuous function.
3. Write the integrating factor of the differential equation $\sqrt{x \frac{d y}{d x}}+y=e^{-2 \sqrt{ } x}$.
4. If the points with position vectors are collinear find value of $10 \hat{\imath}+3 \hat{\jmath}, 12 \hat{\imath}-$ $5 \hat{\jmath}$ and $\lambda \hat{\imath}+11 \hat{\jmath}$ are collinear find value of λ.

SECTION.B

Questions 5 to 12 carry 2 marks each.
5. Let * be a binary operation on the set R defined $b y a * b=a+b+a b$, where $a, b \in R$ Solve the equation 2 * $\left(3^{*} x\right)=33 R$ 回
6. Solve the equation $\binom{x^{2}}{y^{2}}-3\binom{x}{2 y}=\binom{-2}{-9}$.
7. Evaluate $\int \frac{1+\sin x}{1+\cos x} d x$.

Evaluate $\int \tan ^{-1} x d x$.
8. Evaluate $\int_{8}^{2}|x-5| d x$.
9. Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis
10. If \vec{a} and \vec{b} are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$ then prove that $2 \vec{a}+\vec{b}$ is perpendicular to \vec{b}.
11. Three cards are drawn without replacement from a pack of 52 cards. Find the probability that the cards drawn are king, queen and jack.
12. A couple has $\mathbf{2}$ children. Find the probability that both are boys, if it is known that the older child is a boy.

SECTION.C

Questions 13 to 23 carry 4 marks each.
13. Consider $f: R-\left\{-\frac{4}{3}\right\} \longrightarrow R-\left\{-\frac{4}{3}\right\}$ given by $f(x)=\frac{4 x+3}{3 x+4}$. Show that f is bijective. Find the inverse of f and hence x if $f^{-1}(x)=2$

OR
Show that the relation R in the set $N \times N$ defined by $(a, b) R(c, d)$ if $a^{2}+d^{2}=b^{2}+a^{2}$ for all $a, b, c, d, \in N$, is an equivalence relation.
14. Show that $\boldsymbol{\operatorname { t a n }}\left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}$
15. Using properties of determinants prove that

$$
\left|\begin{array}{ccc}
3 x & -x+y & -x+z \\
x-y & 3 y & z-y \\
x-z & y-z & 3 z
\end{array}\right|=3(x+y+z)(x y+y z+z x)
$$

16. If $x \sqrt{1+y}+y \sqrt{1+x}=0,(x \neq y)$, then prove that $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$.

OR
If $y=\cos ^{-1}\left(\frac{2 x-3 \sqrt{1-x^{2}}}{\sqrt{13}}\right)$, then find $\frac{d^{2} y}{d x^{2}}$.
17. If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$, then show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}-y=0$
18. Find the equation of tangent to the curve $y=\cos (x+y),-2 \pi \leq x \leq 0$ that is parallel to the line $x+2 y=0$.
19. Evaluate $\int\left\{\log (\log x)+\frac{1}{(\log x)^{2}}\right\} d x$
20. Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sin 2 \theta}{\sin ^{4} \theta+\cos ^{4} \theta} d \theta$
21. Solve the differential equation $(x-\sin y) d y+(\tan y) d x=0$, given that $y=0$ when $x=$ 0

OR

Show that the differential equation $\left(x \sin ^{2} \frac{y}{x}-y\right) d x+x d y=0$, is homogeneous. Find the Particular solution of this differential equation, given that $y=\frac{\pi}{4}$ when $x=1$. 22. Two adjacent sides of a parallelogram are $2 \widehat{\boldsymbol{\imath}}-4 \hat{\jmath}-5 \widehat{k}$ and $2 \widehat{\boldsymbol{\imath}}+2 \hat{\jmath}+3 \widehat{\boldsymbol{k}}$ Find the two-unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.
23. Find the vector and cartesian equations of line through the point (1, 2, -4) and perpendicular to the lines

$$
\begin{array}{r}
\vec{r}=(8 \widehat{\imath}-9 \widehat{\jmath}+10 \widehat{k})+\lambda(3 \widehat{\imath}-16 \widehat{\jmath}+7 \widehat{k}) \text { and } \vec{r} \\
=(15 \widehat{\imath}-29 \widehat{\jmath}+5 \widehat{k})+\lambda(3 \widehat{\imath}+8 \widehat{\jmath}-5 \widehat{k}) \\
\text { SECTION.D }
\end{array}
$$

Questions 24 to 29 carry 6 marks each.
24. If $A=\left(\begin{array}{ccc}3 & 2 & 1 \\ 4 & -1 & 2 \\ 7 & 3 & -3\end{array}\right)$, the find A^{-1} and hence solve the following system of equation
$3 x+4 y+7 z=14,2 x-y+3 z=4, x+2 y-3 z=0$.
OR
If $A=\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & -1\end{array}\right)$, find the inverse of A using elementary row of transformation and hence solve the matric equation $X A=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)$
25. Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone. Also fine its greatest curved surface area.
26. Using integration, find the area bounded by the tangent to the curve $4 y=x^{2}$ at the point $(2,1)$ and the lines whose equations are $x=2 y$ and $x=3 y-3$

chasess	
CBSEGuess.com	

Using integration, find the area of the region bounded by the curve $y=\sqrt{4-x^{2}}, x^{2}+$ $y^{2}-4 x=0$ and the X axis
27. Find the position vector of foot of the perpendicular and the perpendicular distance from the point P with position vector $2 \widehat{\imath}+3 \widehat{\jmath}+4 \widehat{k}$ to the plane $\vec{r} \cdot(2 \widehat{\imath}+\widehat{\jmath}+3 \widehat{k})-$ $26=0$. Also find the image of P in the plane.

OR
Find the distance of the point ($3,-2,1$) from the plane $3 x+y-z+2=0$ measured parallel to the line $\frac{x-3}{2}=\frac{y+2}{-3}=\frac{z-1}{1}$ Also find the foot of the perpendicular from the given point upon the give plane.
28. A retired person wants to invest an amount of Rs. 50,000. His broker recommends investing in two types of bonds A and B yielding 10% and 9% return respectively on the invested amount. He decides to invest at least Rs 20,000 in bond A and at least Rs 10, 000 in bond B. He also wants to invest at least as much in bond A as in bond B. Solve this linear programming problem graphically to maximize his returns.
29. Two numbers are selected at random (without replacement) from the first six positive integers. Let x denote the larger of two numbers obtained. Find the probability distribution of the random variable X and hence find the mean and variance of the distribution.

